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Abstract. This paper describes a cache-line conflict profiling method
that advances the state of the art performance tuning workflow by ac-
curately highlighting the sources of conflicts. The basic idea behind this
is the use of cache simulators as a diagnosis tool for cache-line conflicts.
We also propose a mechanism that enables to identify where line con-
flict misses are incurred and the reasons why the conflicts occur. We
evaluate our conflict simulator using some of the benchmark codes used
in the HPC field. From the results, we confirm that our simulator can
accurately model the cache behaviors that cause line conflicts and re-
veal the sources of them during the execution. Finally, we demonstrate
that optimizations assisted by our mechanism contribute to improving
performance for both of serial and parallel executions.

Keywords: accurate cache simulation, conflict miss detection, perfor-
mance tuning, array padding

1 Introduction

Recently, compiler technologies have made significant progress in automatic
vectorization and thread-level parallel execution techniques. However, further
source code refactoring for performance tuning is often required to obtain per-
formance close to the versions manually optimized by expert programmers [15].
Primary sources that cause this inefficiency are derived from memory subsys-
tems composed of caches. To increase effective memory bandwidth, or to reduce
the latency for a memory access, we need to make good use of cache memories.
However, current compilers are often oblivious to cache-conscious optimizations
needed to fully utilize the locality in the application. As shown later in this pa-
per, executable binary generated by a compiler does not always fit well to the
underlying cache memories. Mostly this is caused by cache-line conflict misses,
which often degrade performance significantly.

In this paper, we strive to eliminate performance degradation or performance
variability due to line conflict misses. Modern CPU systems typically have highly
associative cache structures to avoid conflict misses as much as possible. One
example seen in Intel Sandy Bridge CPU is that the L3 cache is organized as a
20-way associative cache. Even in the lower L1 and L2 caches, their associativity
is 8-way. However, in some of applications that intensively access a particular
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set in the associative cache, the number of elements mapped onto the same set
can easily exceed the degree of associativity [5] and cause conflict misses. Since
this often impacts on performance seriously, we should avoid it by refactoring
the source code.

The actual behavior of cache memories within a real system is normally
invisible from software. Hence, we provide a way to diagnose avoidable cache
misses and a simple workflow to get rid of them. To diagnose cache behaviors,
we propose a cache-line conflict simulator called C2Sim and attempt to mimic
the occurrence of cache-line conflicts by concurrent dual cache simulations. For
accurate line conflict detection, we simulate fully-associative (FA) caches as a
subsidiary simulation of the underlying set-associative (SA) caches. Furthermore,
to assist a performance tuning workflow, we provide a mechanism that reveals the
sources of cache-line conflicts and attempts to ease the actual code modification
process.

The primary contributions of this paper are as follows:

– We develop C2Sim for identifying cache-line conflict misses effectively. We
show that C2Sim provides practically accurate detection of conflicts based
on its advanced cache modeling.

– We present a mechanism that can monitor the actual locations of code where
line conflict misses are incurred and the reasons why the conflicts occur.

– We show that cache-line conflict misses can be avoided by padding to the ap-
propriate arrays suggested through our mechanism, and such optimizations
also contribute to scalable performance improvements on parallel executions.

2 Modeling cache structures in modern CPUs

Driven by semiconductor technology scaling, capacity and associativity of cache
memories is continuously increasing. On the other hand, the complexity of al-
gorithms and applications is increasing year by year, which often makes their
memory access patterns complicated. Under these situations, cache memories
are desired to be useful in all the situations. However, there are no universal
cache structures that can exploit locality of references for everything. This is
why the underlying cache performance is sensitive to memory access patterns
derived from application-specific characteristics and the underlying hierarchical
caches and memories.

Therefore, we need to perform source code refactoring to improve cache per-
formance. However, it is hard for skilled programmers to estimate application-
specific cache behaviors and apply these to the performance tuning. One of the
solutions for this situation is to build a simulator of modern x86 64 CPU caches
for performance tuning. Formulating the cache model as a simulator, we can
monitor time-varying behaviors of cache memories, which are normally invisible
from software. By analyzing sequences of particular events during the simula-
tion, we can detect how the cache miss occurs and whether it could be avoidable
or not.
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In this paper, we focus on simulating occurrences of cache-line conflicts and a
reasoning mechanism upon it for assisting cache performance tuning. Situations
where massive amount of requests to a particular set of a cache causes conflict
misses are also called cache thrashing. Since it results in serious performance
degradation, it should be avoided as much as possible. While cache thrashing is
considered to be obvious only in caches that have low associativity, we reveal that
it occurs even in current high associative cache structures. Especially, it is seen in
typical scientific computing applications that calculate large multi-dimensional
arrays.

Here, we investigate how such conflicts normally invisible from application
programmers are detected precisely from actual execution. Collins et al. at-
tempted to identify line conflict misses by storing the history of replaced cache
lines using an FIFO for every set of caches [4]. In their method, when the miss
to a cache set matches a previously evicted tag stored in the FIFO, then it is
identified as a line conflict miss. However, as we show later in this paper, this
sometimes leads false detections due to the sensitivity to the number of entries of
the FIFO. Since this approach fundamentally includes under- or overestimation
of conflicts, this is impossible to detect conflicts precisely. To resolve this issue,
we propose a detection scheme based on comparison to FA (fully-associative)
cache behavior.

3 Cache-line conflict simulator

3.1 FA cache based conflict detection

We propose a cache-line conflict simulator called C2Sim. The key idea for accu-
rate line conflict detection is to conduct FA cache simulation as side simulation
to the baseline cache simulation for the target configuration. We also provide a
mechanism that identifies where and why line conflict misses occurs.

A cache-line conflict occurs when the number of accessed data elements map-
ping to the same set exceeds the degree of associativity. In this situation, the
original cache line to be accessed was replaced before it is requested again. Such
a cache line conflict miss consequently appears only in SA (set-associative) or
direct-mapped structures where the number of cache lines within a set is limited.
Here, we define a conflict miss as a miss that could be avoided in the FA cache
with the same capacity. Since for FA cache there are no limits of associativity, its
behavior is a theoretical upper bound for optimization that completely avoids
cache-line conflicts. From this definition, when an access to the FA cache hits
whereas that for the SA cache misses, it is classified as a conflict miss. When an
access both for the FA cache and the SA cache simultaneously misses, it is clas-
sified as a capacity miss. Based on these, we implement an FA cache simulator
and compare its behavior with the SA cache simulator having the same capacity
so that we can detect conflict misses.

It is believed that simulating actual FA caches that maintains true LRU order
incurs much overhead compared with a typical SA cache simulation because FA
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Fig. 1. An efficient FA cache simulation method.

cache needs tag comparison across all entries1. To reduce this overhead, we
develop an efficient algorithm for FA cache simulation as illustrated in Figure 1.
Instead of using an O(N) or a non-linear algorithm for keeping a true LRU order,
we use a hash and a list structure for it. Here, we can directly map a tag to the
corresponding entry of the hash with an O(1) lookup unless the entry is heavily
shared by other tags (hash collision). If the tag cannot be found in the first entry
of the hash, we search the following list structure. After the corresponding tag
is found, we have a pointer to the LRU list. This list is implemented using a
doubly linked list and maintains a true LRU order. The maximum length of this
list corresponds to the number of cache lines and is decided by the capacity of
the cache.

3.2 Reasoning around line conflicts

A straightforward conflict detection mechanism discussed above is still insuffi-
cient to assist a performance tuning workflow done by programmers. Because
the said mechanism only returns how many conflicts appear in the execution,
programmers need to read source code carefully and find out where and why the
conflicts occur. To improve the productivity of this process, we present a new
interface that maps simulation results as clues for performance tuning. We also
provide a new mechanism that reveals the locations where and why line-conflict
misses occur.

In order to keep track of these, we propose LT-WET (Last TimeWho EvicT):
a data structure that records key events at instruction level granularity. Figure 2
illustrates how we monitor cache-line conflicts using the LT-WET structure. The
key idea here is to store which memory reference instruction triggers a cache-
line eviction, and to resolve the reason when a conflict miss for the same set is
detected in future. The details are as follows: First, when a cache miss occurs
in the SA cache, we store the tag of evicted line to the EvictedTag field and
cache miss instruction’s address to the Originator field respectively as shown
in Figure 2 (a). At the same time, when the memory access is identified as a

1 Here, we focus only on true LRU replacement policy for both of FA and SA caches.
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Fig. 2. How to find out where and why the conflict occurs.

conflict miss, we search the tag corresponding to the current memory reference
instruction from the EvictedTag field. We then identify the miss originator that
had caused the last eviction to the current miss as shown in Figure 2 (b). Here,
the LT-WET structure is implemented using a hash structure similar to the one
used in FA cache simulation to reduce the time for searching tags.

The conflict miss instruction coupled with its originator indicates where and
why the conflict miss occurs. The instructions that cause conflict miss can easily
be traced back to the source code through debug information that compilers
embed inside application binaries.

We also perform memory object relative profiling, which correlates every
memory reference to the objects in memory layout appearing in the actual
execution. To obtain accessed memory regions, we monitor the ranges (min,
max) of accessed memory addresses for all memory reference instructions. Then,
each memory region is mapped to a symbol found inside the program. We ex-
tract static symbols such as global variables and constants by analyzing the
executable-and-linkable (ELF) code. To obtain the symbols of memory regions
allocated at runtime, we monitor the memory map at ’/proc/pid/maps’ for stack
regions and hook functions for memory allocators such as malloc. Finally, these
memory access related information are consolidated and outputted as results of
memory object relative profiling.

3.3 Advanced cache modeling for accurate simulation

To prevent false conflict detections due to cache modeling inaccuracy, we develop
the following advanced simulation mechanisms to C2Sim: a virtual to physical
address translation, and a slice mapping mechanism for an L3 cache.

The first mechanism, virtual to physical address translation, enables C2Sim
to model Physically Indexed Physically Tagged (PIPT) caches for L2 and L3,
and a Virtually Indexed Physically Tagged (VIPT) cache for L1. Here, when the
total capacity per associativities is greater than the page size, the mapping for
physical address affects cache indexing. This is seen in the typical L2 and L3
caches when using a default 4KB page. To reflect the actual physical addresses in
our simulation, we monitor the mapping table located at ’/proc/pid/pagemap’

5



provided by Linux OS when a new page is accessed and record them in a hash
table.

The second one, a slice mapping algorithm for L3 cache, is needed to model
L3 caches accurately. An L3 cache in modern Intel CPUs is known to be divided
into pieces, usually referred to as slices [6]. The number of slices matches the
number of physical cores, and each slice contains 2048 sets, which are equal to
2.5MB in 20 way set associative configurations. Dividing an L3 cache into slices
will spread the traffic almost evenly across the slices and prevent conflicts inside
an L3 cache. Therefore, knowing the details of the slice selection algorithm is
crucial for building accurate cache simulators. In [6], the authors recover the
slice selection algorithm used in modern Intel CPUs based on the Prime+Probe
side channel technique. In this paper, following the hash function in [6] (for 8
core CPUs in Table II), we model the slice selection and mapping mechanism.

As far as we know, C2Sim is the first cache simulator that implements phys-
ical address translation and L3 slice mapping algorithm. In Section 4, we will
validate the accuracy of C2Sim by comparing its cache miss ratio with the one
obtained using hardware performance counters in the actual CPUs.

4 Evaluation

4.1 Methodology

In this section, we evaluate our cache-line conflict simulator, C2Sim, using a
typical x86 64 Linux server running CentOS 6.7 with two of Intel Xeon E5-2680
CPUs. We implement C2Sim on the top of Pin tool set [9]. For the baseline
cache simulation, we set up the same configuration as the underlying CPU, that
is L1=32KB 8way, L2=256KB 8way and L3=20MB 20way. Here, we model three
level data caches with true LRU replacement where L3 is managed with inclusion
policy and L2 is with non-inclusive policy. In the current implementation, C2Sim
does not model a shared L3 cache and coherence protocols among different cores,
and it just simulates cache behaviors without any delays for cache coherence and
communication among other levels.

We use the following benchmarks in HPC field: PolyBench/C 4.2, 3D-FDTD
and Himeno benchmark. The PolyBench is a benchmark suite composed of 30
numerical computation kernels in various application domains such as linear
algebra computations, image processing, physics simulation, dynamic program-
ming, statistics [3]. Here, we set the data type to double and use LARGE dataset.
3D-FDTD is a benchmark code that evaluates three-dimensional finite-difference
time-domain method which is widely used in high-frequency electromagnetic field
analysis for the design of electrical devices [10]. Himeno benchmark is composed
of a kernel code used in incompressible fluid analysis [2], and one of well-known
memory bottleneck applications. We generate executable binary code of these
target applications using GNU gcc 4.4.7 with ’-O3 -g’ option, and first examine
cache behaviors for single thread execution. To examine effectiveness for parallel
code, we generate multithreaded code with ’-fopenmp’ option and evaluate their
effects for scalability.
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Table 1. Evaluating our cache simulator with statistics obtained from PMU.

Native C2Sim PMU C2Sim Maximum
Time [s] overheads L1 miss L2 miss L3 miss L1 miss L2 miss L3 miss abs. error

floyd-warshall 122.62 27.45 6.24% 50.00% 100.00% 6.25% 50.06% 99.98% 0.06%
correlation 3.98 209.87 66.97% 52.00% 0.00% 66.45% 51.63% 0.02% 0.52%
3mm 5.20 138.85 38.24% 11.00% 1.00% 37.51% 11.12% 0.26% 0.74%
gemm 2.04 81.20 3.15% 100.00% 1.00% 3.13% 100.00% 0.17% 0.83%
ludcmp 39.08 73.50 31.39% 37.00% 22.00% 32.59% 38.28% 20.53% 1.47%
2mm 4.04 150.58 38.06% 12.00% 1.00% 36.27% 11.50% 0.31% 1.79%
covariance 4.00 116.09 67.01% 53.00% 0.00% 66.42% 51.18% 0.02% 1.82%
trmm 1.13 330.67 60.00% 7.00% 2.00% 61.06% 7.62% 0.08% 1.92%
lu 39.55 72.75 29.29% 37.00% 23.00% 29.63% 38.84% 20.97% 2.03%
cholesky 37.55 55.56 25.44% 13.00% 80.00% 25.07% 13.19% 83.20% 3.20%
gramschmidt 3.84 140.91 57.05% 13.00% 1.00% 57.16% 17.20% 0.05% 4.20%
heat-3d 21.08 20.89 9.99% 100.00% 46.00% 6.37% 99.84% 50.66% 4.66%
jacobi-2d 11.29 30.49 3.69% 48.00% 93.00% 8.35% 50.00% 100.00% 7.00%
nussinov 9.36 80.03 34.47% 12.00% 19.00% 34.21% 12.24% 26.34% 7.34%
symm 2.14 110.14 33.96% 29.00% 3.00% 33.36% 21.46% 1.65% 7.54%
fdtd-2d 11.60 26.51 7.91% 85.00% 66.00% 7.73% 87.23% 75.13% 9.13%
syrk 1.16 274.93 23.96% 23.00% 2.00% 23.71% 13.19% 0.26% 9.81%
syr2k 2.29 225.06 33.77% 23.00% 4.00% 33.48% 12.48% 1.61% 10.52%
doitgen 0.92 87.75 33.95% 3.00% 14.00% 34.23% 2.71% 2.80% 11.20%
adi 21.23 37.10 16.77% 43.00% 81.00% 17.03% 30.56% 79.75% 12.44%
seidel-2d 34.98 10.57 8.35% 48.00% 93.00% 3.75% 33.37% 100.00% 14.63%

In this evaluation, we apply the concept of sampling based cache simula-
tion technique [12] to C2Sim in order to reduce the overheads of on-line cache
simulation. Here, we set 100M instructions for the warm-up phase and 500M
instructions for the evaluation phase after skipping 4G clock cycles for the first
forward phase. We also note that we turn off the hardware prefetch implemented
in the CPU when we examine the cache statistics using our simulator. While the
hardware prefetch affects cache behaviors and in most cases results in perfor-
mance improvements, it sometimes obscures fundamentals of cache conflicts.
This is why we turn off the hardware prefetch for evaluating cache behaviors.

4.2 Verification of our simulator

Next, we validate accuracy of C2Sim by comparing the cache miss ratio with
that from Performance Monitoring Unit (PMU) implemented in the underly-
ing CPU2. We note that these cache miss ratios are observed during whole the
execution. Here, we use PolyBench suite for this evaluation and measure cache
miss ratios during whole the execution. We exclude the programs whose na-
tive execution time is less than 0.8 second (gemver, gesummv, atax, bicg, mvt,
durbin, trisolv, deriche, jacobi-1d) since a short measurement interval tends to
be unsound for sampling simulation.

Table 1 shows the time for native execution of the program and the simulation
overheads (slowdown factor) calculated by measuring the time needed for cache
simulation for the same program. While the simulation overheads have a wide

2 Here, we measure L2/L3 cache miss ratio by Intel PCM, and L1 miss ratio by LIK-
WID using counters such as L1D REPLACEMENT and MEM UOPS RETIRED....
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Table 2. Effects of physical address translation and L3 slice mapping.

VA PA VA+slice PA+slice PA+slice sampling

Avg. max abs error 48.76% 40.73% 9.33% 5.18% 5.37%

range of variation, the average overhead is 109. To compare the other simulators,
we calculate MIPS (Million Instructions Per Second) rates for simulating these
programs. The resultant average MIPS rate is 40.06. This is several orders of
magnitude faster than typical microarchitectural simulators and the state of the
art cache simulators [17].

The result in Table 1 also shows the accuracy of cache modeling on our
C2Sim compared with the statistics obtained from PMU. Here, we calculate the
average maximum absolute errors of all programs and use it as a criterion for
accuracy. The maximum absolute error of each program is obtained by picking
up the maximum one among three cache levels after calculating absolute errors
between PMU and C2Sim for each cache level. From the results, we find the
maximum absolute errors of half of these programs are less than 5%. For all of
the programs, the observed maximum absolute error is less than 15%. In average,
it is 5.37%. These results indicate that C2Sim is accurate and practical enough
to model the performance of hierarchical caches implemented in modern CPUs.

Table 2 shows the accuracy of simulation compared with that of the real
machine. Here, VA represents simulations only using virtual addresses; PA rep-
resents ones with physical address translation. ’PA + slice (sampling)’ indicates
typical C2Sim configuration. All of the maximum absolute errors are average of
21 PolyBench programs listed above. From these results, we observe that the L3
slice mapping is an important factor for accurate simulation. It contributes to
reducing the average maximum absolute error to 5.37%. It is also observed that
even if we enable sampling simulation, the error just increases slightly (0.19%).
We also observe that the simulation speed becomes 1.6 times faster if we enable
sampling. Therefore, we can understand that coupling these three techniques
(PA + slice & sampling) contributes to building an accurate and light-weight
cache simulator. These results indicate that our simulator is accurately model
the performance of hierarchical caches implemented in modern CPUs.

4.3 Accuracy for line conflict detection

Next, we show the advantages of C2Sim over the existing conflict detection
mechanism. Here, we compare the FIFO-based method in [4, 17] with C2Sim,
where the number of FIFO entries is set to the twice the number of associativities
as seen in these papers. Table 3 shows the ratios of line conflicts to the total
misses detected in each level. We calculate absolute errors among them and
represent the maximum one across all three level as Maximum abs. error. All
the elements are sorted by the field of Maximum abs. error.

From the results, we observe that the FIFO-based mechanism approximates
C2Sim’s FA-based behaviors in 7 programs (gemm, covariance, correlation, symm,
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Table 3. Detected line conflicts in the FIFO-based mechanism and C2Sim.

FIFO-based C2Sim Maximum
L1conflict L2conflict L3conflict L1conflict L2conflict L3conflict abs. error

gemm 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
covariance 0.00% 88.04% 0.00% 0.00% 88.04% 0.00% 0.00%
correlation 0.00% 88.03% 0.00% 0.00% 88.01% 0.00% 0.02%
doitgen 87.62% 98.90% 0.00% 87.68% 98.90% 0.00% 0.06%
symm 10.12% 37.14% 0.73% 10.04% 37.30% 0.73% 0.16%
2mm 0.29% 0.41% 0.00% 0.00% 0.42% 0.00% 0.29%
gramschmidt 0.00% 84.19% 0.00% 0.00% 84.57% 0.00% 0.38%
syr2k 9.84% 0.26% 2.02% 0.53% 0.27% 2.02% 9.31%
nussinov 21.23% 0.05% 24.78% 0.45% 0.02% 5.89% 20.78%
lu 2.51% 71.45% 21.42% 1.76% 71.58% 0.07% 21.35%
ludcmp 2.51% 71.04% 21.38% 1.74% 71.12% 0.02% 21.36%
3mm 23.17% 0.00% 0.00% 0.00% 0.00% 0.00% 23.17%
trmm 25.75% 2.25% 0.00% 0.62% 2.01% 0.00% 25.13%
syrk 45.08% 0.00% 0.00% 0.06% 0.00% 0.00% 45.02%
floyd-warshall 49.98% 0.00% 0.11% 0.00% 0.08% 0.03% 49.98%
heat-3d 0.00% 47.02% 50.69% 0.00% 0.00% 0.00% 50.69%
fdtd-2d 12.51% 0.00% 73.26% 0.00% 0.00% 5.36% 67.90%
adi 11.91% 6.20% 81.34% 1.09% 6.21% 0.99% 80.35%
cholesky 0.01% 0.12% 87.47% 0.00% 0.51% 0.24% 87.23%
seidel-2d 66.63% 0.00% 95.90% 0.00% 0.00% 0.00% 95.90%
jacobi-2d 50.00% 0.00% 100.00% 0.00% 0.00% 0.00% 100.00%

doitgen, 2mm, gramschmidt) with less than 1% absolute errors. However, the
rest of them contains a lot of false judgments, where the FIFO-based classifies
a miss to a conflict but actually it should be classified to a capacity miss (not
to conflict). Since the cache miss behavior of FA caches is a theoretical lower
bound that excludes any possible conflict misses, C2Sim can detect the accurate
number of cache-line conflicts by combining it with the underlying SA caches.

On the other hand, the FIFO-based method is a kind of approximation of
such an FA cache behavior. These judgments cause the difference of 33.3% in av-
erage of the maximum absolute errors. The evaluation done by Collins in [4] also
showed that their FIFO-based method could identify 88% of conflict misses on
the direct-mapped or the 2-way associative cache. From our preliminary evalua-
tion, we observed that the number of FIFO entries is sensitive to the detection ac-
curacy especially for configurations with highly associative caches. Hence, there
are no way to completely exclude false judgments in the FIFO-based method.
On the contrary, C2Sim accurately models the behavior of cache conflicts based
on their definition, and it is robust for highly associative cache structures (such
as 20 ways) in modern CPUs.

Considering the actual use cases against performance tuning, the false judg-
ments should be avoided as much as possible to correctly provide the opportunity
for cache optimization. For instance, the FIFO-based method correctly reveals
the conflicts in covariance while it completely fails in jacobi-2d. If the program-
mers who perform cache optimization use the wrong target information created
by the FIFO-based method, they will never achieve the performance gain from
any memory layout optimizations related to line conflicts. On the other hand,
our C2Sim can productively reach the precise targets in the performance tuning
workflow.
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Memory object-relative view:

malloc[#3]  total=336299057  conflictMissPC= 4008a2  

-->  malloc[#3]  cnt= 308503621, 17620466, 0, originPC= 4008a2  

-->  malloc[#1]  cnt= 9951731, 107283, 0, originPC= 400898  

-->  malloc[#2]  cnt= 0, 115952, 0, originPC= 400888  4008c8  

-->  Stack(7fff72dde2c4, 4)   cnt= 0, 4, 0, originPC= 4008ee  

malloc[#1]  total=10603920  conflictMissPC= 400898  4008ce  

-->  malloc[#3]  cnt= 10603920, 0, 0, originPC= 4008a2  

malloc[#2]  total=115953  conflictMissPC= 400888  4008c8  

-->  malloc[#3]  cnt= 0, 115953, 0, originPC= 4008a2  

=========================================================

Reason classification view:

sum  inter-array       intra-array         scalar        unknown

#conflict      347018930:     20894839      326124087        4    0

Ratio                       6.02%         93.98%          0.00%          0.00%

(b) A snapshot of observed sources of conflicts (doitgen)(a) Detected cache-line conflicts by C2Sim

Conflicts [%]

L1 L2 L3

doitgen 87.68% 98.44% 0.00%

3D-FDTD (1) 37.45% 0.00% 0.00%

Himeno (2) 92.94% 0.00% 1.76%

(1) FDTD:  128x128x64, timestep=50,  

# of mediums (prescribed by array ‘id’)=10
(2) Himeno Benchmark:  OpenMP, C_Dynamic, size=S

Fig. 3. The detected conflicts and their sources.

4.4 Reasoning around line conflicts for performance tuning

To examine where and why the conflicts occur and to apply these for an ac-
tual performance tuning workflow, we pick up three programs (doitgen from
PolyBench, 3D-FDTD, Himeno). Figure 3 (a) summarizes their cache conflicts
detected by C2Sim. Here, we observe conflicts in L1 cache for these programs.
For doitgen, we observe conflicts in L2 cache.

To investigate the sources of conflicts further, we analyze the data recorded in
the LT-WET structure. Figure 3 (b) shows the observed sources of line conflicts
during the execution of doitgen. Here, we represent the sources in the following
two manners: memory object-relative view and reason classification view. In the
memory object-relative view, we track the appearances of conflicts using sym-
bols that represent the memory objects. Here, we see that the malloc[#3] (the
thirdly invoked malloc in this execution) causes 336M conflicts at the instruction
0x4008a2. In the following four lines, four of its miss originators are represented
with the number of L1, L2, L3 conflicts and their miss originate PCs. Here, we
observe that the most significant miss originator is malloc[#3], the same object
as the one that causes the miss, and then find the primary reason is intra-array
conflict. Similarly, we find the other three originators are caused by inter-array
conflict. In the reason classification view, we collect the total number of intra-
and inter-array conflicts for the program execution. From these results, we find
that the intra-array conflicts within malloc[#3] are dominant in doitgen.

These information assists us in making strategies for avoiding the unneces-
sary conflict misses and improving the potential performance of caches. Table
4 (a) shows the actual strategies formulated in this paper. While padding is a
traditional technique and some existing papers build analytical models to decide
the amount of padding [5], the locations to be padded are heuristically deter-
mined by hands of expert programmers. Therefore, we propose a workflow that
inserts padding to the appropriate arrays suggested through our source analysis
mechanism.

Table 4 (b) shows cache optimizations performed for doitgen and their resul-
tant performance gains. Since the intra-array conflicts within malloc[#3] is the
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Table 4. Cache tuning conducted for doitgen, 3D-FDTD, Himeno.

(a) Strategies for avoiding cache-line conflicts

Tuning strategy

Opt.1 Intra-array padding insertion 

Opt.2 Use of hugetlbfs (2MB page)

Opt.3 Inter-array padding insertion

(b) Cache optimizations in doitgen

Speedup

Original 1.00 

Opt.3 1.32 

Speedup

Original 1.00 

Opt.1 1.19 

Opt.1+Opt.2 1.21 

Opt.2 1.02 

HW PF Speedup (**)

1 thread
off 1.62 

on 1.75 

16 threads
off 1.50 

on 1.70 

(c) Cache optimizations in 3D-FDTD

(d) Scalability for parallel threads and 
sensitivity to HW prefetch in Himeno

(**) Opt.3 is performed

dominant source of conflicts, we insert an extra space within the first dimension
of the corresponding 2D array ’C4’ in the program. Here, we set 8 elements (64
Bytes) as the amount of intra-array padding to insert an extra space equivalent
to one cache-line size. After this optimization (Opt.1), we observe 1.19 times
speedup from its original code.

Next, we check whether the conflicts are resolved using C2Sim. The results
show that conflicts in L2 still remain although these in L1 are completely elimi-
nated. Here, this phenomenon is derived from the page size used for evaluation.
When we use a default 4KB page, the lower 12 bits of memory addresses be-
comes offsets within the page. Also, for the L1 cache indexing, the lower 12 bits
are used. Therefore, all of L1 indexing can be done within a page. However, the
L2 and the L3 cache need to use the upper parts of these 12 bits for their in-
dexing, and these are affected by physical address mapping. Since typical linux
systems randomize its address space layout through ASLR, the upper parts of
the indexes are fragmented. These random index generation makes the effect
of intra-array padding diminished. To avoid this, we set 2MB pages through
hugetlbfs and control the cache indexing for L2 and L3. After this optimization
(Opt.1 + Opt.2), the conflicts within L2 cache are eliminated, and this results
in a further speedup. Here, we note that we cannot achieve such performance
improvement if we just adopt hugetlb without intra-array padding (Opt.2).

Then, we shift to the cache optimization for 3D-FDTD. From the result of
conflict source analysis using C2Sim, we observe that the conflicts found in L1 are
dominated by inter-array conflicts across 7 arrays. Based on this, we insert extra
spaces to these arrays. To distribute positions of sets in the L1 cache, we arrange
the amount of the padding as interPad+ = LineSize×⌊N#sets/N#arrays⌋. This
means that M × 64× 9 bytes padding is inserted at the beginning of Mth array,
where N#sets = 64, N#arrays = 7. From this intra-array padding (Opt.3), we
can achieve 1.32 times speedup as shown in Table 4 (c).

Next, we examine scalability for multithread executions. Table 4 (d) shows
the speedup obtained from the original code using an OpenMP version of Hi-
meno. First, we analyze cache miss behaviors for serial and 16-thread execution
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using C2Sim and observe that both of them are dominated by L1 inter-array
conflicts across 7 major arrays3. Then, we insert inter-padding by displacing the
starting position of each array 64×9 bytes from the adjacent arrays similar to the
case of 3D-FDTD. Additionally, to validate feasibility in the actual use cases, we
compare the speedup with the configuration that enables the hardware prefetch.
From the results, we observe that the performance gain due to the padding is
kept even if the number of threads is increased to 16. It is also observed that
additional speedup can be obtained when we turn on the HW prefetch. Here, we
observe that 1.75x speedup in 1 thread and 1.70x speedup in 16 threads can be
achieved compared with their baseline before the padding. From these, we can
understand that the optimal padding decision assisted by C2Sim contributes to
scalable performance improvement for multithread programs.

We note that the workflow consisting of three strategies (Opt.1 to Opt.3)
presented in this Section could be performed automatically by feeding back the
dominant source of conflicts to the code generation or runtime parts implemented
as a software stack composed of compilers and memory management systems.
As a future work, we plan to enhance our C2Sim for a basis of fully automated
tuning system.

5 Related works

C2Sim is a simulation-driven model for detecting cache-line misses to exploit the
underlying cache performance. The core part of C2Sim is similar to the algo-
rithm used in cachegrind [1,11], which models SA caches, aligned and unaligned
memory accesses and true LRU replacement policy on the top of a dynamic
binary translator. In addition to the model found in cachegrind, we implement
mechanisms for identifying cache-line conflicts and model more detailed cache
structures such as three level caches, physical address translation, and a slice
mapping mechanism.

CMP$im [7] is a cache simulator implemented using the Pin tool set like ours.
While it models details of cache structures across a multi-core CPU, it does not
provide any mechanisms to reveal line conflict misses in their original form. On
the other hand, C2Sim provides a concurrent dual cache simulation mechanism
to accurately identify cache-line conflicts and their sources.

The authors of [19] implement a comprehensive cache simulator that pro-
vides cache performance data needed for code optimization. They focus on reuse
distance and define conflict miss as follows: If the reuse distance of an access is
smaller than the number of cache lines, the resulted miss is regarded as a conflict
miss. However, their definition based on reuse distance is a kind of approxima-
tion like the FIFO-based method [4, 17]. The judgments for conflicts depend on
their threshold distance and this leads errors for the detection.

A profiler called DProf presented in [13] uses CPU performance counters to
categorize types of cache misses. They attempt to identify line conflict misses

3 The 16-thread execution might underestimates conflicts in a shared L3 cache because
we assume 16 independent L3 caches in the current C2Sim implementation.
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(associativity miss in that paper) by finding repeated cycles of the same address
in a single associativity set. However, it is not clear how accurate they classify
the type of miss using information from hardware performance counters. On the
other hand, our C2Sim models line-conflict misses based on theoretical upper
bound using FA cache and detect them accurately.

Seshadri et al. proposed a special hardware mechanism called Evicted-Address
Filter (EAF) to mitigate cache-line conflicts [18]. They classify line conflict into
cache pollution and cache thrashing and attempt to record them on EAF. While
their approach can prevent line conflicts to some extent by adjusting cache in-
sertion policy, theirs are hardware-based approach and require modification of
hardware.

To the best of our knowledge, this paper is the first one that presents cache-
line conflict detection within actual programs using software-based advanced
cache simulation techniques. The essential part of this is to reveal detail cache
behavior normally invisible from software. Therefore, our simulator is capable of
evaluating the impact of different cache organization and strategies like prefetch-
ing and replacement policy in addition to cache conflicts focused on this paper.

Padding is a traditional performance optimization technique to avoid cache
line conflict misses [5, 16]. For inserting pads appropriately, we need to inves-
tigate where the extra spaces should be inserted and how much space is good
for performance. While some existing papers build analytical models to decide
the amount of padding [5, 8, 14], the locations to be padded are heuristically
determined by hands of expert programmers. On the other hand, our C2Sim
provides practically accurate sources of conflict and their locations. We believe
this dramatically eases the actual performance tuning workflow.

6 Conclusions

In this paper, we have presented a method that reveals cache-line conflicts during
the actual execution. Here, we developed a cache-line conflict simulator called
C2Sim. C2Sim is capable to simultaneously simulate both ideal fully associative
caches and realistic baseline caches derived from existing architectures. We also
proposed a mechanism that enables users to identify where and why line conflict
miss occurs. We have shown that cache-line conflict misses can be avoided by
padding the appropriate arrays as suggested by our C2Sim analysis. We also
showed that these clues manifest themselves in improved execution performance
in both serial and parallel executions.

C2Sim is available at https://github.com/YukinoriSato/ExanaPkg as a
part of Exana tool kit. We encourage researchers and developers to download it
as a basis for productive performance tuning.
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